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Abstract. In this paper, we suggest a theoretical method based on the statistical mechanics for treating
the α-helix↔random coil transition in alanine polypeptides. We consider this process as a first-order phase
transition and develop a theory which is free of model parameters and is based solely on fundamental
physical principles. It describes essential thermodynamical properties of the system such as heat capacity,
the phase transition temperature and others from the analysis of the polypeptide potential energy surface
calculated as a function of two dihedral angles, responsible for the polypeptide twisting. The suggested
theory is general and with some modification can be applied for the description of phase transitions in
other complex molecular systems (e.g. proteins, DNA, nanotubes, atomic clusters, fullerenes).

PACS. 82.60.Fa Heat capacities and heats of phase transitions – 87.15.He Dynamics and conformational
changes – 64.70.Nd Structural transitions in nanoscale materials – 64.60.-i General studies of phase
transitions

1 Introduction

The phase transitions in finite complex molecular sys-
tems, i.e. the transition from a stable 3D molecular struc-
ture to a random coil state or vice versa (also known as
(un)folding process), has a long standing history of in-
vestigation (for review see, e.g., [1–4]). The phase transi-
tions of this or similar nature occur or can be expected
in many different complex molecular systems and in nano
objects, such as polypeptides, proteins, polymers, DNA,
fullerenes, nanotubes [5]. They can be understood as first
order phase transitions, which are characterized by rapid
growth of the system’s internal energy at a certain tem-
perature. As a result, the heat capacity of the system as
a function of temperature acquires a sharp maximum at
the temperature of the phase transition.

In our recent paper [6] a novel ab initio theoretical
method for the description of phase transitions in the men-
tioned molecular systems has been suggested. In particu-
lar, it was demonstrated that in polypeptides (chains of
amino acids) one can identify specific, so-called twisting
degrees of freedom responsible for the folding dynamics
of amino acid chains, i.e. for the transition from a ran-
dom coil state of the chain to its α-helix structure. The
twisting degrees of freedom are also sometimes referred as
the torsion degrees of freedom. The essential domain of
the potential energy surface of polypeptides with respect
to these twisting degrees of freedom can be calculated
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and thoroughly analyzed on the basis of ab initio meth-
ods such as density functional theory (DFT) or Hartree-
Fock method. It was shown [6] that this knowledge is suf-
ficient for the construction of the partition function of
a polypeptide chain and thus for the development of its
complete thermodynamic description, which includes the
calculation of all essential thermodynamic variables and
characteristics, e.g. free energy, heat capacity, phase tran-
sition temperature, etc. The method has been proved to
be applicable for the description of the phase transition
in polyalanine chains of different lengths by the compar-
ison of the theory predictions with the results of several
independent experiments and of molecular dynamics sim-
ulations. Similar descriptions can be developed for a large
variety of complex molecular systems.

Earlier studies of the folding process based on the sta-
tistical mechanics principles (see [7–10]) always contained
some empirical parameters and thus could hardly be used
for ab initio predictions of essential characteristics of the
phase transitions. Since then, the total number of papers
devoted to this problem is very large. Here we do not in-
tend to review all of them, but refer in this article only to
those, which are related directly to our work (for review
see also [1,3,4] and references therein).

The first theoretical attempt to describe the folding
process of polypeptides was done by Zimm and Bragg [7].
In their work the process of polypeptide α-helix formation
was considered within the framework of simple two-state
statistical model. This model contains three principal pa-
rameters: (i) a constant describing the probability of an
amino acid to bond in the helix conformation to a part of
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the chain being in the helical form, (ii) a special correction
factor for the initiation of helix formation (i.e. a factor de-
scribing the probability of an amino acid to bond in the
helix conformation to an amino acid that is in the ran-
dom coil state), and (iii) the minimum number of amino
acids allowed to exist in the random coil state between
two helical parts.

A different set of parameters was suggested in [8]. The
major parameters used in that paper are the energies of
hydrogen bonds in the polypeptide chain and the number
of possible conformations in the random coil state. These
two parameters define the energy and entropy differences
between folded and unfolded states of the polypeptide.
In [10] the factors affecting the stability of polypeptide
structures in solution were discussed.

In [9] the partition function of a polypeptide chain
was determined as a function of generalized coordinates
corresponding to the twisting degrees of freedom of the
molecule’s backbone. In that paper the conditional prob-
abilities of the occurrence of helical and coil states of the
peptide units are obtained in the form of a 3 × 3 matrix.
The eigenvalues of this matrix yield the various molecular
averages as functions of the degree of polymerization, tem-
perature, and molecular constants. The theoretical model
suggested in [9] contained three parameters which describe
the statistical weights of three possible states of an amino
acid in a polypeptide chain: the helix state, the coil state
and the boundary state occurring at the interface between
the helix and the coil phases.

In [11] another method was suggested for the deriva-
tion of the partition function of linear-chain molecules.
The partition function was constructed on the basis of the
so-called defining sequences, being a sequence of numbers
that describe the lengths of the polypeptide parts found
in different conformational states. Therefore the defining
sequence describes a certain microstate of the system. The
partition function of the system was constructed from the
partition functions of the defining sequences. To do so,
some special functions were introduced, which are called as
the sequence-generating functions. The method suggested
in [11] was used in [12] for the study of helix-coil transi-
tion in polypeptides. In that paper the conditions for the
occurrence of phase transition in one dimensional system
were analyzed. In [13] the kinetics of helix-coil transition
was studied within the theoretical frameworks developed
in [9,11].

In [14,15] the importance of various internal degrees of
freedom in polypeptide was discussed. The partition func-
tion of the system was constructed within the framework
of classical and quantum mechanics.

The helix-coil transition of polypeptides was also stud-
ied in references [16,17]. In those papers general equations
of statistical physics were used to describe this transition.
Those theories contained several parameters (such as en-
thalpy, entropy, free energy changes) which were fitted
to represent results of independent experimental obser-
vations.

The molecular dynamics (MD) approach, an alterna-
tive to using statistical physics, has been widely used

during the last decade for studying structural transitions
in polypeptides. Full atomistic molecular dynamics [18–
20] and Monte-Carlo based techniques [21,22] were used
for studying alanine tripeptide [18], alanine pentapep-
tide [19] and alanine 21-peptide [20,22]. The molecular
dynamics simulations were carried out within the frame-
work of classical mechanics with an empirical Hamiltonian
usually referred as the forcefield. The most popular force-
fields developed during recent years are GROMOS [23],
AMBER [24] and CHARMM [25].

During the last years molecular dynamics was also
widely applied for studying the folding process of small
proteins [26–31]. Such simulations became possible rela-
tively recently due to modern computer powers. However,
it is still not feasible to perform molecular dynamics sim-
ulations of the folding process of large proteins [1] because
the characteristic timescale of this process varies from mi-
cro seconds to minutes [32,33], being several orders of
magnitude larger than the time of possible molecular dy-
namics simulations.

Another molecular dynamics approach for studying
the protein folding problem was suggested in [34,35]. In
these papers the dynamics of the macromolecule was con-
sidered in the phase space of torsional degrees of freedom.

Stochastic treatment of helix-coil transition in
polypeptides was performed in [36,37]. In [36] the appli-
cation of correlated random walk theory for polypeptides
was analyzed. In [37] an atomistic simulation of helix for-
mation with the stochastic difference equation was per-
formed.

The helix-coil transition of polypeptides has also been
extensively studied experimentally [38–41]. In [38] the
enthalpy change accompanying the α-helix to coil tran-
sition has been determined calorimetrically for a 50-
residue Ac–Y(AEAAKA)8F–NH2 peptide that contains
primarily alanine. The dependence of the heat capacity
of the polypeptide on temperature was measured with the
use of differential scanning calorimetry method. In [39,
40] the experiments were performed for A5(A3RA)3A
and MABA–A5–(AAARA)3–A–NH2 alanine-rich peptides
consisting of 21 amino acids by means of UV resonance
Raman spectroscopy and by circular dichroism, respec-
tively. The dependence of helicity on temperature was
recorded. Kinetics of the helix-coil transition of 21 residue
Suc–AAAAA–(AAARA)3A-NH2 alanine based polypep-
tide was studied in [41] by means of infrared spectroscopy.

Previous attempts to describe the helix-coil transition
in polypeptide chains within the framework of statistical
physics were based on the models suggested in the six-
ties [7–10], where the general formalism for the construc-
tion of the partition function of polypeptides was sug-
gested. Earlier theories always included several parameters
in the partition function making it parameter dependent.
The methods suggested in [7–10] were widely used for
the description of the helix-coil transition in polypeptide
chains (see Refs. [1–3,22,42–45]). The dependance of the
thermodynamic characteristics of the α-helix↔random
coil phase transition in polypeptides on model param-
eters, used for the partition function construction, was
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thoroughly analysed (see papers cited above). Some at-
tempts were made to obtain these parameters from exper-
imental observations and from the theoretical calculations.
In [46] the parameters of the Zimm and Bragg theory [7]
were deduced from the optical rotatory dispersion and cir-
cular dichroism measurements on poly(L-cystine) in water
at neutral pH.

The first attempts to evaluate the parameters of the
Zimm-Bragg theory theoretically were performed in [44].
In that paper a semi-empirical potential [47,48] was used
to describe the conformational dynamics of the polypep-
tide. The potential suggested in these papers is similar to
the modern forcefields [23–25], but treats the structure of
a polypeptide in a simplified way by neglecting some of
the hydrogen atoms in the polypeptide and making min-
imal assumptions about the hybridization of atoms. The
potential used in [47,48] can be considered as one of the
first (if not the first) forcefields suggested. With its use
in [44] the parameters of the Zimm-Bragg theory were cal-
culated and the temperature of the helix-coil transition in
polypeptide chain was established. In that paper the par-
tition function was constructed and evaluated within a
matrix approach developed in [9].

The parameters of the Zimm-Bragg theory were
also calculated by means of molecular dynamics simula-
tion [49]. A peptide growth simulation method was intro-
duced, which allowed the generation of dynamic models
of polypeptide chains in α-helix or random coil conforma-
tions. With this method the Zimm-Bragg parameters for
helix initiation and helix growth have been calculated.

In the present paper we describe an alternative the-
oretical approach based on the statistical mechanics for
treating the α-helix↔random coil phase transition in ala-
nine polypeptides. The suggested method is a further de-
velopment of the method suggested in [5,6], which is based
on the construction of a parameter-free partition function
for a system experiencing a phase transition. All the nec-
essary information for the construction of such a partition
function can be calculated on the basis of ab initio DFT,
combined with molecular mechanics theories. Comparison
of the results of this method with the results of molecu-
lar dynamics simulations (see following paper [50]) allows
one to establish the accuracy of the new approach for suf-
ficiently large molecular systems and then to extend the
description to the larger molecular objects, which is es-
pecially essential in those cases when molecular dynamics
simulations are hardly possible because of computer power
limitations.

We note that the suggested method is considered as
an efficient novel alternative to the existing theoretical ap-
proaches for the study of helix-coil transitions in polypep-
tides since it does not contain any model parameters and
gives a universal recipe for the construction of the parti-
tion function in complex molecular systems. The partition
function of the polypeptide is constructed based on a min-
imal number of assumptions about the system which are
different from those used in earlier theories. It includes all
essential physical contributions needed for the description
of the helix-coil transition in polypeptides. Therefore the

Fig. 1. (Color online) The characteristic structural change
of alanine polypeptide experiencing an α-helix↔random coil
phase transition.

final expression for the partition function obtained within
the framework of our theory is different from the ones
suggested earlier.

In this paper we present in detail the theoretical
method for the study of α-helix↔random coil phase tran-
sitions in polypeptides, while in the following paper [50]
we report the results of numerical simulations of this pro-
cess.

2 Statistical mechanics model
for the α-helix↔random coil phase transition

Let us consider a polypeptide, consisting of n amino acids.
The polypeptide can be found in one of its numerous iso-
meric states that have different energies. A group of iso-
meric states with similar characteristic physical properties
is called a phase state of the polypeptide. Thus, a regu-
lar bounded α-helix state corresponds to one phase state
of the polypeptide, while all possible unbounded random
conformations can be denoted as the random coil phase
state.

The phase transition is the transformation of the poly-
peptide from one phase state to another, i.e. the transition
from a regular α-helix conformation to a group of un-
bounded random conformations. The characteristic struc-
tural change of alanine polypeptide experiencing an α-
helix↔random coil phase transition is shown in Figure 1.
In this figure we show only one characteristic conforma-
tion of the polypeptide in the random coil state, while
there exist about 1030 different conformations of 21 ala-
nine polypeptide (see [6] for more details).

The phase transition can either be of the first or of the
second order. The first order phase transition is charac-
terized by an abrupt change of the internal energy of the
system with respect to its temperature. In the first order
phase transition the system either absorbs or releases a
fixed amount of energy while the heat capacity as a func-
tion of temperature has a pronounced peak [2]. We study
the manifestation of these features for alanine polypeptide
chains of different lengths.

2.1 Hamiltonian of a polypeptide chain

To study thermodynamic properties of the system one
needs to investigate its potential energy surface with
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respect to all degrees of freedom. There are a number
of different methods for calculating the energy of many-
body systems. The most accurate approaches are based on
solving the Schrödinger equation. These approaches are
usually referred as ab initio methods since they involve a
minimum number of assumptions about the system.

For complex molecular systems ab initio calculations
require significant computer power. Depending on the
method, the computational cost of such calculations grows
as N2 or even N8 [51], where N is the number of parti-
cles in the system. The size of molecular system which can
be described using ab initio methods is therefore limited,
and such methods can hardly be used for the description
of large biological molecules or systems.

For the description of macromolecular systems, such as
polypeptides and proteins, efficient model approaches are
necessary. One of the most common tools for the descrip-
tion of macromolecules is based on the so-called molecular
mechanics potential, which reads as

U =
Nb∑

i=1

kbi (ri − r0i )
2 +

Na∑

i=1

kai (θi − θ0i )
2

+
Nd∑

i=1

kdi [1 + cos(niφi + δi)] +
Nid∑

i=1

kidi (Si − S0
i )

2

+
N∑

i,j=1
i<j

4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

+
N∑

i,j=1
i<j

qiqj
rij

. (1)

Here the first four terms describe the potential energy
with respect to variation of distances, angles, dihedral an-
gles and improper dihedral angles between two, three and
four neighboring atoms respectively. The last two terms
describe the van der Waals and Coulomb interaction re-
spectively. The summation in the first term goes over all
topologically defined bonds in the system, in the second
over all topologically defined angles, and in the third over
all topologically defined dihedral angles and in the fourth
over all topologically defined improper dihedral angles.
The total number of bonds, angles, dihedral angles and
improper dihedral angles are Nb, Na, Nd and Nid respec-
tively. N is the total number of atoms in the system. kbi ,
kai , k

d
i and kidi in (1) are the stiffness parameters of the

corresponding energy terms. r0i , θ
0
i and S0

i are the equilib-
rium values of bonds, angles and improper dihedral angles.
ni and δi are the number of possible stable torsion confor-
mations and the initial torsion phase. εij , σij and qi are
the van der Waals parameters and the charges of atoms
in the system.

Parameters kbi , k
a
i , k

d
i , k

id
i , r0i , θ

0
i , S

0
i , ni, δi, εij , σij

and qi are derived from experimental measurements of
crystallographic structures, infrared spectra or on the ba-
sis of quantum mechanical calculations for small systems
(see [23–25] and references therein). The independent vari-
ables in (1) are ri, θi, φi and Si.

Note, that the terms corresponding to the variations
of distances, angles and improper dihedral angles in (1)
describe the motion of the molecule within the harmonic

Fig. 2. (Color online) Dihedral angles ϕ and ψ used for char-
acterization of the secondary structure of a polypeptide chain.
The dihedral angle χi characterizes the rotation of the side
radical along the Cα

i − Cβ
i bond.

approximation which is reasonable only at low temper-
atures. The potential energy corresponding to torsion
degrees of freedom is usually assumed to be periodic
(see Eq. (1)) because several stable conformations of the
molecule with respect to these degrees of freedom are pos-
sible [23–25,52–55]. The torsion degrees of freedom are
also referred as the twisting degrees of freedom [52–55].
The most important twisting degrees of freedom for the
description of a helix-coil transition in polypeptides are
the twisting degrees of freedom along the backbone of the
polypeptide [5,6,34,35]. These degrees of freedom are de-
fined for each amino acid of the polypeptide except for the
boundary ones and are described by two dihedral angles
ϕi and ψi (see Fig. 2).

Both angles are defined by four neighboring atoms in
the polypeptide chain. The angle ϕi is defined as the
dihedral angle between the planes formed by the atoms
(C

′
i−1 −Ni−Cαi ) and (Ni−Cαi −C

′
i). The angle ψi is de-

fined as the dihedral angle between the (Ni−Cαi −C
′
i) and

(Cαi −C
′
i−Ni+1) planes. The atoms are numbered from the

NH2– terminal of the polypeptide. The angles ϕi and ψi
take all possible values within the interval [−180◦;180◦].
For the unambiguous definition the angles ϕi and ψi are
counted clockwise, if one looks on the molecule from its
NH2– terminal (see Fig. 2). This way of angle counting is
the most commonly used [52–56].

A Hamiltonian function of a polypeptide chain is con-
structed as a sum of the potential, kinetic and vibrational
energy terms. For a polypeptide chain in a particular con-
formational state j consisting of n amino acids and N
atoms we obtain:

Hj =
P2

2M
+

1
2

(
I
(j)
1 Ω2

1 + I
(j)
2 Ω2

2 + I
(j)
3 Ω2

3

)

+
3N−6∑

i=1

p2
i

2mi
+ U({x}), (2)

where P, M , I(j)
1,2,3, Ω1,2,3, are the momentum of the whole

polypeptide, its mass, its three main momenta of inertia,
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and its rotational frequencies. pi, xi and mi are the mo-
mentum, the coordinate and the generalized mass describ-
ing the motion of the system along the ith degree of free-
dom. U({x}) is the potential energy of the system, being
the function of all atomic coordinates in the system.

One can group all degrees of freedom in a polypeptide
in the two classes: “stiff” and “soft” degrees of freedom.
We call the degrees of freedom corresponding to the varia-
tion of bond lengths, angles and improper dihedral angles
(see Fig. 2) as “stiff”, while degrees of freedom correspond-
ing to the angles ϕi and ψi are classified as “soft” degrees
of freedom. The “stiff” degrees of freedom can be treated
within the harmonic approximation because the energies
needed for a noticeable change of the system structure
with respect to these degrees of freedom are about sev-
eral eV which is significantly larger than the characteristic
thermal energy of the system at room temperature being
on the order of 0.026 eV [23–25,54,55,57].

The Hamiltonian of the polypeptide can be rewrit-
ten in terms of the “soft” and “stiff” degrees of freedom.
Transforming the set of Cartesian coordinates {x} to a
set of generalized coordinates {q}, corresponding to the
“soft” and “stiff” degrees of freedom one obtains:

Hj =
P2

2M
+

1
2

(
I
(j)
1 Ω2

1 + I
(j)
2 Ω2

2 + I
(j)
3 Ω2

3

)

+
ls∑

i=1

ls∑

j=l

gij
psip

s
j

2
+

ls∑

i=1

ls+lh∑

j=ls+1

gijp
s
ip
h
j

+
ls+lh∑

i=ls+1

ls+lh∑

j=ls+1

gij
phi p

h
j

2
+ U({qs}, {qh}), (3)

where qs and qh are the generalized coordinates corre-
sponding to the “soft” and “stiff” degrees of freedom, and
ps and ph are the corresponding generalized momenta.
ls and lh is the number of the “soft” and “stiff” de-
grees of freedom in the system, satisfying the relation
3N − 6 = ls + lh. U({qs}, {qh}) in equation (3) is the
potential energy of the system as a function of the “soft”
and “stiff” degrees of freedom. 1/gij has a meaning of the
generalized mass, while gij is defined as follows:

gij =
3N−6∑

λ=1

1
mλ

∂qi
∂xλ

∂qj
∂xλ

. (4)

Here xλ and mλ are the generalized coordinate in the
Cartesian space and the generalized mass of the system,
corresponding to the degree of freedom with index λ. qi
and qj denote the “soft” or the “stiff” generalized coordi-
nate in the transformed space.

The motion of the system with respect to its “soft”
and “hard” degrees of freedom occurs on the different time
scales as was discussed in [15]. The typical oscillation fre-
quency corresponding to the “soft” degrees of freedom is
on the order of 100 cm−1, while for the “stiff” degrees of
freedom it is more than 1000 cm−1 [15]. Thus the motion
of the system with respect to the “soft” degrees of freedom
is uncoupled from the motion of the system with respect

to the “stiff” degrees of freedom. Therefore the fifth term
in equation (3), which describes the kinetic energy of the
“stiff” motions in the polypeptide can be diagonalized.
The corresponding set of coordinates {q̃s} describes the
normal vibration modes in the “stiff” subsystem:

Hj =
P2

2M
+

1
2

(
I
(j)
1 Ω2

1 + I
(j)
2 Ω2

2 + I
(j)
3 Ω2

3

)

+
lh∑

i=1

((
p̃hi
)2

2µhi
+
µhi ω

2
i

(
q̃hi
)2

2

)

+
ls∑

i=1

ls∑

j=1

gij
psip

s
j

2
+ U({χ}) + U({ϕ, ψ}). (5)

Here ωi and µhi are the frequency of the ith “stiff” normal
vibrational mode and the corresponding generalized mass.
Note, that the fourth term in equation (3) vanishes if the
“soft” and the “stiff” degrees of freedom are uncoupled.
The last two terms in equation (5) describe the potential
energy of the system in respect to the “soft” degrees of
freedom. For every amino acid there are at least two “soft”
degrees of freedom, corresponding to the angles ϕi and ψi
(see Fig. 2). Some additional “soft” degrees of freedom
involve the rotation of the side radicals in amino acids.
A typical example is the angle χi, which describes the
twisting of the side chain radical along the Cαi −Cβi bond
(see Fig. 2). The angle χi is defined as the dihedral angle
between the planes formed by the atoms (C

′
i − Cαi − Cβi )

and by the bonds Cαi − Cβi and Cβi − Hβ
i1. Note, that the

notations χ, ϕ and ψ are used for the simplicity and for the
further explanation of our theory. The set of these dihedral
angles builds up the set of “soft” degrees of freedom of the
polypeptide: {qs} ≡ {χ, ϕ, ψ}.

Note that generalized masses 1/gij depend on the
choice of the generalized coordinates in the system. How-
ever this dependence can be neglected if the system is
considered in the vicinity of its equilibrium state. In this
case the motion of the polypeptide with respect to the
“soft” degrees of freedom can be considered as the mo-
tion of the system of coupled nonlinear oscillators. In the
vicinity of the system’s equilibrium state the generalized
mass can be written as:

1
gij

=
1

gij
({qsi0}

)

+
ls∑

k=1

∂ (1/gij)
∂qsk

∣∣∣∣
qs
k
=qs

k0

(
qsk − qsk0

)
+ . . . , (6)

where qsk0 denotes the value of the kth “soft” degree of free-
dom at the equilibrium position. The second and higher
terms in equation (6) describes the dependence of the gen-
eralized mass on coordinates and can be neglected if the
system is in the vicinity of its equilibrium. All the informa-
tion about the nonlinearity of the oscillations is contained
in the potential energy functions U({χ}) and U({ϕ, ψ})
in equation (5).

The validity of the coordinate-independent mass ap-
proximation was also discussed in reference [15]. In the
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present paper we do not account for the coordinate de-
pendence of the generalized masses, gij , and leave this
question open for further investigation.

2.2 Partition function

The partition function of the polypeptide is constructed
within the framework of classical mechanics. We consider
the classical partition function because in our following pa-
per [50] we have treated the polypeptide classically. How-
ever the presented formalism can be easily generalized for
the quantum mechanical description of the system.

All thermodynamic properties of a system are deter-
mined by its partition function, which can be expressed
via the system’s Hamiltonian in the following form [58]:

Z =
∫

exp
(
− H

kT

)
dΓ, (7)

where H is the Hamiltonian of the system, k and T are
the Boltzmann constant and the temperature respectively
and dΓ is an element of the phase space. Substituting (5)
into (7) one obtains an expression for the partition func-
tion of a polypeptide in a particular conformational state
j. Thus, the partition function of the system can be fac-
tored as follows:

Z =
1

(2π�)3N
Z1 Z2 Z3 Z4 Z5, (8)

where

Z1 =
∫

exp

(
1
kT

[
− P2

2M
−
(

M2
1

2I(j)
1

+
M2

2

2I(j)
2

+
M2

3

2I(j)
3

)])
d3P d3Q d3M d3Φ

= 64π5VjM
3/2

√
I
(j)
1 I

(j)
2 I

(j)
3 (kT )3, (9)

Z2 =
∫

exp

(
− 1
kT

lh∑

i=1

((
p̃hi
)2

2µhi
+
µhi ω

2
i

(
q̃hi
)2

2

))

× dlh p̃h dlh q̃h =
(2πkT )lh
∏lh
i=1 ωi

, (10)

Z3 =
∫

exp

(
− 1
kT

ls∑

i=1

(p̃si )
2

2µsi

)
dls p̃s

=
√

(2πkT )
ls

ls∏

i=1

√
µsi , (11)

Z4 =
∫

exp
(
−U({χ̃})

kT

)
dlχ χ̃s, (12)

Z5 =
∫

exp

(
−U({ϕ̃, ψ̃})

kT

)
dlϕϕ̃s dlψ ψ̃s. (13)

Z1, equation (9), describes the contribution to the parti-
tion function originating from the motion of the polypep-
tide as a rigid body. Here Vj is the specific volume of

the polypeptide in conformational state j and M is the
angular momenta of the polypeptide. Z2, equation (10),
accounts for the “stiff” degrees of freedom in the polypep-
tide. Z3, equation (11), describes the contribution of the
kinetic energy of the “soft” degrees of freedom to the par-
tition function. Z4, equation (12), and Z5, equation (13),
describe the contribution of the potential energy of the
“soft” degrees of freedom to the partition function. In-
tegrating over the phase space in equations (9)–(13) is
performed over generalized coordinates and momentum
space.

For the derivation of equations (11)–(13) we have diag-
onalized the quadratic form of the generalized momenta
corresponding to the “soft” degrees of freedom in equa-
tion (5) and made a transformation qsi → q̃si , p

s
i → p̃si .

In equation (11), µsi is the generalized mass of the ith
“soft” normal vibration mode, being related to gij in equa-
tion (4). χ̃, ϕ̃ and ψ̃ in equations (12)–(13) denote the
“soft” twisting degrees of freedom, which have been trans-
formed accordingly. Note that q̃si and p̃si are canonical con-
jugated coordinates. lχ, lϕ and lψ in equations (12)–(13)
is the number of the χ, ϕ and ψ degrees of freedom in the
system. Note, that ls = lχ + lϕ + lψ.

Integrals in equations (9)–(11) can be evaluated an-
alytically, while for the integration over the angles χ, ϕ
and ψ in equations (12)–(13) the knowledge of the exact
potential energy surface of the polypeptide is necessary.
However the potential energy of the polypeptide corre-
sponding to the twisting degrees of freedom χ does not
depend on the conformation of the polypeptide in case
of neutral non-polar radicals in simple amino acids (i.e.
alanine, glycine) [15]. Thus, the twisting degrees of free-
dom corresponding to the variations of angles χ have a
minor influence on the α-helix↔random coil phase tran-
sition. The potential energy of the polypeptide in respect
to these degrees of freedom is well described by the fol-
lowing function, as follows from the molecular mechanics
potential equation (1):

U(χi) = kχi [1 + cos (3χi)] , (14)

where kχi is the stiffness parameter of the potential. Since
kχi = kχ, substituting equation (14) into equation (12)
and integrating over 2π one obtains:

Z4 =
[
2π exp

(
− kχ
kT

)
I0

(
kχ
kT

)]lχ

= (2π)lχB(kT ), (15)

where I0(x) is the the modified Bessel function of the first

kind, and B(kT ) =
[
exp

(
− kχ
kT

)
I0

(
kχ
kT

)]lχ
.

Substituting Z1–Z5 into equation (8) one obtains the
expression for the partition function of a polypeptide in a
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particular conformational state j:

Zj =

⎡

⎣Vj M
3/2

√
I
(j)
1 I

(j)
2 I

(j)
3

∏ls
i=1

√
µsi

(2π)
ls
2 −lχπ�3N

∏lh
i=1 ωi

⎤

⎦

×B(kT ) (kT )3N−3− ls
2

×
∫ π

−π
. . .

∫ π

−π
e−

U({ϕ,ψ})
kT dϕ1 . . . dϕn dψ1 . . . dψn

= Aj B(kT ) (kT )3N−3− ls
2

×
∫ π

−π
. . .

∫ π

−π
exp

(
−Usr({ϕ, ψ}) + Ulr({ϕ, ψ})

kT

)

× dϕ1 . . . dϕndψ1 . . .dψn, (16)

Aj denotes the factor in the square brackets. Note, that
generalized masses µhi are reduced during the integration
and do not enter into the expression of the partition func-
tion.

Usl in equation (16) describes the potential energy of
the system corresponding to the short-range interactions
of individual amino acid in the polypeptide. Ulr accounts
for the long-range interactions, such as the Coulomb and
van der Waals interactions between distant amino acids.

Since a polypeptide exist in different conformational
states, one needs to sum over the contributions of all pos-
sible conformations Zj in order to calculate the complete
partition function of the polypeptide. For an ensemble
of N noninteracting polypeptides the partition function
reads as

Z =

⎛

⎝
ξ∑

j=1

Zj

⎞

⎠
N

=

(
B(kT ) (kT )3N−3− ls

2

ξ∑

j=1

Aj

×
∫ π

−π
. . .

∫ π

−π
exp

(
−Usr({ϕ, ψ}) + Ulr({ϕ, ψ})

kT

)

× dϕ1 . . . dϕndψ1 . . . dψn

)N
, (17)

where Zj is defined in (16) and ξ is the total number of
possible conformations in a polypeptide. Equation (17)
has been derived with a minimum number of assumptions
about the system. It is general, however, its use for a par-
ticular molecular systems is not so straightforward. Ex-
pression (17) can be further simplified, if one makes addi-
tional assumptions about the structure of the system.

For the sake of simplicity, we write further equations
for only one polypeptide instead of N . Generalization for
the case of N statistically independent polypeptides can
always be done according to (17).

One can expect that the factors Aj in (17) depend on
the chosen conformation of the polypeptide. However, due
to the fact that the values of specific volumes, momenta
of inertia and frequencies of normal vibration modes of
the polypeptide in different conformations are expected
to be close [6,59], the values of Aj in all these conforma-
tions can be considered as equal, at least in the zero order
approximation. Thus Aj ≡ A.

In many polypeptides the amino acids can be treated
as statistically independent in any conformation. This fact
is not obvious and it was not systematically investigated
so far. The statistical independence of small neutral non-
polar amino acids (alanine, glycine, tryptophan, etc.) in
a polypeptide was studied in [56] with the use of time-
correlation functions between different amino acids. In our
following paper [50], we address this question for alanine
polypeptides and determine the degree to which amino
acids in the polypeptide can be treated as statistically
independent.

It is important to note, that for neutral non-polar
amino acids the long-range term Ulr({ϕ, ψ}) in the parti-
tion function equation (17) can be neglected because the
long-range interactions in that case are small.

With the assumptions made, the partition function of
polypeptide reduces to:

Z =A B(kT ) (kT )3N−3− ls
2

×
ξ∑

j=1

n∏

i=1

∫ π

−π

∫ π

−π
exp

(
− ε

(j)
i (ϕ, ψ)
kT

)
dϕdψ, (18)

where ε(j)i (ϕ, ψ) is the potential energy of ith amino acid
in the polypeptide, being in one of its ξ conformations
denoted with j. The potential energy of the amino acid is
calculated as a function of its twisting degrees of freedom
ϕ and ψ.

In equation (18) the partition function is summed over
all conformations of the polypeptide. However, in the case
of the α-helix to random coil transition of the polypeptide,
the summation over the polypeptide conformations has to
be performed only over the conformations involved in the
transition.

Note that equation (18) is rather general and can be
used for the description of the folding process in proteins.
Indeed, the partition function in equation (18) is deter-
mined by the potential energy surfaces of amino acid in
the native state of a protein and in the random coil confor-
mation. The potential energy surfaces can be calculated
on the basis of ab initio DFT, combined with molecular
mechanics theories as demonstrated in [5,6] and in the
following paper [50]. For a protein, which has 20 different
amino acids it is necessary to calculate at least 40 different
potential energy surfaces, while for the study of folding of
polypeptide consisting of the identical amino acids a single
potential energy surface describes the transition.

However, the long-range interactions Ulr in equa-
tion (17) are important for the quantitative description
of the thermodynamical properties of proteins since many
amino acids in real proteins are charged and thus interact
strongly even on large distances. The electrostatic interac-
tions are also important for the DNA unzipping, because
the base-pairs become charged when dissolved in water. In
the present paper we do not discuss the long-range inter-
actions in detail since it is beyond its scope, and present
only the general ideas how these interactions can be ac-
counted for.

When discussing the phase transition in proteins,
DNA, RNA or other complex molecules it is necessary
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to distinguish two prominent phases of the system, which
are usually referred as the native (folded) state and the de-
naturated (unfolded) state. The structure of the molecule
in its native state is usually known and therefore the co-
ordinates of atoms and their partial charges can be de-
fined. Therefore in this case the long-range interactions
can be described quite accurately, and for each amino acid
the corresponding contribution can be added in the short-
range potential energy surfaces characterizing the native
state of the protein or the DNA or the RNA molecules.

To account for the long-range interactions in the de-
naturated state one has to perform averaging of the in-
teraction energy over the whole ensemble of denaturated
conformations. The long-range interactions in the denat-
urated molecule can be accounted using random walk for-
malism. Knowing the short-range interactions in the sys-
tem (in particular the potential energy surfaces in respect
to the “soft” degrees of freedom), one can construct the
space probability distribution function for every amino
acid in a polypeptide. Knowing the probability distribu-
tion function it is then possible to determine the average
Coulomb (van der Waals) interaction energy between dif-
ferent parts of the system. The gradient of this energy cor-
responds to the generalized force which enters the diffusion
equation describing the random walk of amino acid chain.
Solving the diffusion equation one obtains the modified
Coulomb potential, which then should be used again in the
diffusion equation to obtain the next order of approxima-
tion for the Coulomb potential. Thus, iteratively solving
the diffusion equation one obtains the self-consistent space
distribution function of amino acids. Knowing the distri-
bution function of amino acids in the denaturated state
one obtains the partition function of the system with cor-
rections for the long-range interactions. The formalism of
the non-Markovian random walk theory, its application to
proteins and other complex molecules will be considered
separately in the future work [60].

Further simplifications of the partition function (18)
for polypeptide consisting of the identical non-polar, neu-
tral amino acids can be achieved if one assumes that each
amino acid in the polypeptide can occupy two states only,
below referred as the bounded and unbounded states. The
amino acid is considered to be in the bounded state when
it forms one hydrogen bond with the neighboring amino
acids. In the unbounded state amino acids do not have hy-
drogen bonds. When the α-helix is formed, all amino acids
are in the bounded state, while in the case of random coil
all amino acids occupy the unbounded states.

All possible conformations of the polypeptide experi-
encing in the course of the α-helix↔random coil phase
transition can be divided in three different groups:

I. completely folded state of the polypeptide (α-helix),
in which all the amino acids occupy bounded states;

II. partially folded states of the polypeptide (phase co-
existence), in which the core of λ amino acids of the
polypeptide occupy bounded states, and n−λ bound-
ary amino acids are in unbounded states;

III. completely unfolded state of a polypeptide (random
coil), in which all the amino acids are in unbounded
states;

IV. phase mixing, in which two or more fragments of a
polypeptide are in an α-helix state, while the amino
acids between the fragments are in the random coil
state.

With the assumptions outlined above and assuming the
polypeptide to consist of n identical amino acids the
partition function (18) of the system can be rewritten
as follows:

Z = A B(kT ) (kT )3N−3− ls
2

[
βZn−1

b Zu

+ β

n−2∑

i=4

(n− i)ZibZ
n−i
u + Znu

+
(n−3)/2∑

i=2

βi
n−i−3∑

k=i

(k − 1)!(n− k − 3)!
i!(i− 1)!(k − i)!(n− k − i− 3)!

× Zk+3i
b Zn−k−3i

u

]
. (19)

Here the first and the third terms in the square brackets
describe the partition function of the polypeptide in the
α-helix and in the random coil phases respectively, while
the second term in the square brackets accounts for sit-
uation of the phase co-existence. The summation in the
second term in (19) is performed from i = 4, because
the shortest α-helix consists of 4 amino acids. The last
term in the square brackets accounts for the polypeptide
conformations in which a number of amino acids being
in the helix conformation are separated by amino acids
being in the random coil conformation. The first sum-
mation in this term goes over the separated helical frag-
ments of the polypeptide, while the second summation
goes over individual amino acids in the corresponding frag-
ment. Polypeptide conformations with two or more helical
fragments are energetically unfavorable. This fact is dis-
cussed in our following paper [50]. As shown in the follow-
ing paper [50] the contribution to the partition function
represented by the fourth term in the square brackets in
equation (19) is significantly small when compared to the
first three terms, for polypeptides containing less than 100
of amino acids. Therefore, it can be omitted in the con-
struction of the partition function. Zb and Zu are the con-
tributions to the partition function from a single amino
acid being in the bounded or unbounded states respec-
tively, they read as:

Zb =
∫ π

−π

∫ π

−π
exp

(
− ε

(b)(ϕ, ψ)
kT

)
dϕdψ, (20)

Zu =
∫ π

−π

∫ π

−π
exp

(
− ε

(u)(ϕ, ψ)
kT

)
dϕdψ, (21)

β =
[ ∫ π

−π

∫ π

−π
exp

(
− ε

(b)(ϕ, ψ) + ε(u)(ϕ, ψ)
kT

)

× dϕdψ
]3 1

Z3
u

≈ exp
(
−3EHB

kT

)
, (22)
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Fig. 3. Temperature dependence of the heat capacity for a
system experiencing a phase transition.

where ε(b)(ϕ, ψ) and ε(u)(ϕ, ψ) are the potential energies
of a single amino acid being in the bounded or in the un-
bounded states respectively calculated versus the twisting
degrees of freedom ϕ and ψ. β is a factor accounting for
the entropy loss of the helix initiation. EHB is the en-
ergy of a single hydrogen bond. Substituting (20), (21)
and (22) into equation (19) one obtains the final expres-
sion for the partition function of polypeptide undergoing
an α-helix↔random coil phase transition. This result can
be used for the evaluation of all thermodynamical charac-
teristics of the system.

ε(b)(ϕ, ψ) and ε(u)(ϕ, ψ) determine the partition func-
tion of polypeptide. These quantities can be calculated
on the basis of ab initio DFT, combined with molecular
mechanics theories as demonstrated in [5,6] and in the
following paper [50].

3 Thermodynamical characteristics
of a polypeptide chain

The first order phase transition is characterized by an
abrupt change of the internal energy of the system with
respect to its temperature. In the first order phase transi-
tion the system either absorbs or releases a fixed amount
of energy while heat capacity as a function of temperature
has a sharp peak [2,58] (see Fig. 3).

The peak in the heat capacity is characterized by the
transition temperature T0, the maximal value of the heat
capacity C0, the temperature range of the phase transition
∆W and the specific heat Q, which is also referred as the
latent heat of the phase transition (see Fig. 3).

All these quantities can be calculated if the depen-
dence of the heat capacity on temperature is known. The
temperature dependence of the heat capacity is defined by
the partition function as follows [58]:

C(T ) = kT
∂2T ln Z

∂T 2
. (23)

The characteristics of the phase transition are determined
by the following equations:

dC(T )
dT

∣∣∣∣
T=T0

= 0, (24)

C0 = C(T0), (25)

C(T0 ±∆W ) =
C0

2
, (26)

Q =
∫ ∞

0

C(T )dT. (27)

Unfortunately it is not possible to obtain analytical ex-
pressions for T0, C0, ∆W and Q with partition function
defined in (19) because the integrals in (20) and (21) can
not be treated analytically. However, the qualitative be-
havior of these quantities can be understood if one as-
sumes that all conformational states of a polypeptide in a
certain phase have the same energy. This model is usually
referred to in literature as the two-energy-level model [4–6]
and it turns out to be very useful for the qualitative anal-
ysis of the phase transitions in polypeptide chains. If one
considers the phase transition between two such phases,
the partition function can then be constructed as follows:

Z ≈ Z0

[
1 +A

η2
η1
e−

∆E
kT

]
, (28)

where Z0 is the partition function of the system in the first
phase, ∆E = E2−E1 is the energy difference between the
states of the polypeptide in two different phases, η1 and
η2 are the numbers of isomeric states of the polypeptide in
the first and in the second phases respectively. They can
also be considered as the population of the two phases.
A = A2/A1 is the coefficient depending on masses, spe-
cific volumes, normal vibration modes frequencies and mo-
menta of inertia of the polypeptide in the two phases. Sub-
stituting equation (28) into equation (23) one obtains the
expression for the heat capacity in the framework of the
two-energy-level model:

C(T ) =
Aη2
η1
∆E2e−(∆EkT )

kT 2
(
1 +Aη2

η1
e−(∆EkT )

)2 . (29)

Substituting equation (29) into equations (24)–(27) and
solving them one obtains the expressions for T0, C0, ∆W
and Q, which read as:

T0 ≈ ∆E

k ln
(
Aη2
η1

) =
∆E

∆S
, (30)

C0 ≈ k

4

[
ln
(
A
η2
η1

)]2
=
∆S2

4k
, (31)

∆W ≈
√

64 ln 2
π

∆E

k
[
ln
(
Aη2
η1

)]2 =

√
64 ln 2
π

k∆E

∆S2
, (32)

Q =
∫
C(T )dT = ∆E. (33)
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Here ∆S = k lnAη2 − k ln η1 is the entropy change in the
system and M is the mass of a single polypeptide. ∆S and
∆E are the major thermodynamical parameters in the
considered problem, since they determine the behavior of
the phase transition characteristics. From equations (30)–
(32) follows, that T0 ∼ ∆E

∆S , C0 ∼ ∆S2, Q ∼ ∆E and
∆W ∼ ∆E

∆S2 .
The numerical calculation and analysis of various ther-

modynamical characteristics such as the latent heat or the
heat capacity is done in the following paper [50].

4 Conclusion

In the present paper a novel ab initio theoretical method
for treating the α-helix↔random coil phase transition in
polypeptide chains is introduced. The suggested method
is based on the construction of a parameter-free partition
function for a system undergoing a first order phase tran-
sition. All the necessary information for the construction
of such a partition function can be calculated on the basis
of ab initio DFT, combined with molecular mechanics the-
ories (see results of numerical simulations in the following
paper [50]).

The suggested method is considered as an efficient al-
ternative to the existing theoretical approaches for the
study of helix-coil transition in polypeptides since it does
not contain any model parameters. It gives a universal
recipe for statistical mechanics description of complex
molecular systems. Allowing the formalism for account for
the long-range interactions should be further advanced.
The partition function of polypeptide is written with a
minimum number of assumptions about the system which
makes our method much more general and universal in
comparison with other theoretical approaches.

In the present paper we introduced novel theoretical
method for the study of α-helix↔random coil phase tran-
sition in polypeptides. In the following paper [50] we re-
port the results of numerical simulations of this process
obtained within the framework of the suggested model.
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Markovian processes.
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